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Effect of an alternating electric field on transition radiation 

A A Risbud 
Department of Physics, University of Poona, Pune 41 1007, India 

Received 27 August 1980, in final form 20 July 1981 

Abstract. A uniformly moving charged particle that traverses an interface between two 
media having different dielectric properties loses energy in the form of transition radiation. 
The present work considers the problem of transition radiation in the presence of an 
alternating electric field. It is assumed that the particle travels at a uniform relativistic 
velocity and that the alternating electric field is applied at the boundary between two media 
in a direction parallel to the velocity of the particle. The method of Fourier transforms is 
used to solve the modified Maxwell equations with appropriate boundary conditions. 
Assuming that modulation energy is small compared with mean particle energy and using a 
linear approximation, the relativistic formula specifying the intensity of transition radiation 
in the presence of the field is presented in a compact form. It shows that in the presence of 
the field, the backward transition radiation increases, but forward transition radiation 
decreases compared with the radiation without a field. The contribution to the radiation 
due to the field varies linearly with the field strength, but varies inversely with the field 
frequency. 

1. Introduction 

A uniformly moving charged particle loses energy in the form of transition radiation 
when it crosses the boundary between two media. The phenomenon of transition 
radiation was predicted long ago by Frank and Ginzburg (1945). Its theory has been 
developed by Garibyan (1958, 1960), Pafomov (1959), Zhelnov (1961), Yakovenko 
(1962) and many others. Recently, Ginzburg and Tsytovich (1979) have presented a 
comprehensive review article on the subject. But it appears that the problem, initiated 
by Diasamidze and Tsikarishvili (1973, to be referred to as DT), namely that of finding 
the effects of the alternating electric field on transition radiation, has not been 
completely worked out by any worker so far. DT have inferred that the intensity of 
transition radiation changes markedly due to the application of the field. Their 
conclusion regarding a slight reduction in transition radiation due to the weak high- 
frequency field, a significant reduction in the strong field and a quadratic increase due to 
the weak low-fequency field is rather doubtful. Moreover, their treatment is non- 
relativistic. Actually, transition radiation increases with particle energy (Garibyan 
1961, Barsukov 1960), and it becomes useful from the application point of view only at 
relativistic and ultra-relativistic velocities (Zrelov and Ruzicka 1978). So the relativis- 
tic generalisation of the problem is extremely important. 

In view of the above, we have undertaken a study of the effects of an alternating 
electric field on transition radiation due to a charge in relativistic motion. 
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2. Background 

Consider a charged particle with charge e moving with a uniform linear relativistic 
velocity uo perpendicular to the boundary separating two media that are characterised 
by dielectric constants and magnetic permeabilities and M~ (lower half space) and ~2 

and p2 (upper half space) respectively. Assume that the particle crosses the boundary, 
i.e. the x y  plane, at time t = 0 and that an electric field E = Eo sin wot is applied in the z 
direction. Due to the field the velocity of the charge uo changes to u ( t ) .  Using the 
Lorentz transformation and the formula for relativistic addition of two velocities, we 
can write the effective velocity of the particle in the field as 

U* = 0 = U,, 

U0 - U ’  cos wot - MO( 1 - CY cos wot) 

1 - (uou’/c2) cos wot - (1 - ap2 cos wot)’  
U, ( t )  = 

where 

Consequently, the charge and current densities in the Maxwell equations become 

~ ( t ) = e S ( x - h ) S ( y ) S ( z - z ( t ) ) ,  (2) 

A t )  = p ( t ) u ( t )  = i z ( t ) ,  (3) 

where 

~ ( t )  = u, ( t ‘ )  dt’. I 
Here we assume that the modulation energy is small compared with the mean 

particle energy, i.e. U’<< uo, and so we consider the terms linear in U ’  only (Risbud and 
Takwale 1979). Thus, we can write 

(1‘) 3 v , ( r )  -- uo - ( u / y  ) COS w0r 

where 

U = eEo/mowo. 

Using equation (1’) we obtain 

(4) 
3 z ( t )  = uot - ( u / y  wo) sin wot = uot - a sin wot 

where 
3 a = u / y  wo. 

The electromagnetic fields induced by the charge in a medium are given by Maxwell’s 
equations. In terms of the scalar (4)  and vector (A) potentials, they reduce to 

( 5 )  

where n = ( ~ p ) ~ ”  is the refractive index of the medium and the charge and current 
densities p ( t )  and j ( t )  are given by equations (2) and (3) respectively. 

Here the problem is tackled by the method of Fourier transforms. Therefore, all 
quantities such as electromagnetic fields, charge and current densities and potentials, 

~ ’ 4  - n2a24/at2 = - P I E ,  V2A - n2a2A/at2 = -pj, 
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etc, are expressed in the following form: 
+m 

F(r, t )  = I F(k,  w )  exp[i(k r - ut)] dk dw 
-m 

where F(r, t) may be any one of the functions mentioned above. In order to obtain the 
general solutions, the fields obtained from equation ( 5 )  need to be supplemented by the 
solutions of the homogeneous Maxwell equations. At the interface between the two 
dielectrics, the appropriate boundary conditions are applied to the general solutions of 
the fields which provide the necessary equations that are solved to obtain radiation 
fields. The energy radiated is further calculated using Poynting’s theorem. 

3. Calculation results 

The solutions of the inhomogeneous Maxwell equations are found to be 

and 

H1,2(k, 0 )  = (1/WP1,2)k x EL2 (8) 
where 

w + iwo + w + ( Z + l ) w o  - w + ( Z - l ) w o  
xt=-, XL = 9 XL = 9 

U0 U0 U0 

2 A=$[SCut  -k,)+s(xL -kz)l, u 1 . 2  = (k2 -w2n: ,2 ) - l ,  

and the suffix 1 or 2 refers to the medium under consideration. The solutions of the 
inhomogeneous Maxwell equations are written as 

+m 

EL2 (r, t )  = E h  (k, 0 )  exp[i(xp + A 1.2.2 - 4 1  dk dw (9) 

(r, t). Here p and x are the components of vectors r and a similar expression for 
and k in the x y  plane, and A is the z component of k satisfying the condition 

(10) 2 2  2 
A?,2  = U  n1.2 -x . 

Here A is complex, i.e. A = A ’  + iA”. The radiation condition at infinity restricts the value 
of A such that A ’1 C 0, AY C 0, A i  > 0 and A 2” > 0 because the first medium occupies the 
lower half space, while the second medium occupies the upper half space. The 
homogeneous Maxwell equations for the radiation fields yield 

where f denotes the unit vector in the z direction. Resolving E;,2(k, w )  into its 
tangential and normal components, we rewrite the last condition as 

X E L , ( ~ ,  W ) + A I , ~ E L ( ~  U )  = O s  (12) 
Using equations (7), (8), (11) and (12), the general solutions are obtained. Since the 
vectors w )  are in the same direction as x, only two of the four boundary 
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conditions are independent. The solutions of the resulting two equations give the 
following radiation fields: 

The radiation fields in the second medium can be obtained if we interchange the indices 
1 and 2 in equation (13). The expression for the radial component of the electric field, 
E; ,  = E ; ,  cos a, where a is the angle between x and p, becomes 

xexp[i(xp cos a +Alz  -wt ) lx  dx  d a  d o  dk,. (14) 

We integrate with respect to a from 0 to 2 r ,  x from 0 to 00 and w and k, from ---CO to 
+W. 

The integral in a evaluated in terms of Bessel functions is 

cos a exp(ixp cos a )  d a  = 27r iJl(xp). 

Changing to spherical coordinates, using p = R sin 8, z = -R cos 6 (where R is the 
distance from the coordinate origin to the observation point), and for large values of R 
using the asymptotic form of the Bessel function, equation (14) can be put in the 
following form: 

where 
f(x) = x sin 8 - A 1 R cos 8, q5(x) = -x  sin 8 -AIR cos 8. 

The integral with respect to x in equation (15) can be evaluated by using the method of 
steepest descent (Garibyan 1958). Here we omit the details of the calculation and given 
the final result as 

E;,  = 2 e dk, d o  n:w2 sin 8 cos2 8 exp[iw(RnL - t)] 
21r R i = - a  
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where 

-l+(u&/sin2 e ) ( n i - k  + 
k:  - w2M2 

&k,) = n: - 
k2 -w2n: cos2 8 k:  

M2=nt-n:sin2 8. 

Applying a similar method of calculation to the normal component, we find that E ; ,  
satisfies a similar equation to that for E;,  with sin’ 8 cos 8 replacing sin 8 cos’ 8. Using 

E ;  = E ; ,  cos 8 + E ; ,  sin 8, 

and performing the integration with respect to k, using the S function, the radiation 
field in the first medium is found to be 

E ;  =- e f J dwn:w2 sin e cos e exp[io(Rnl- ?)I 
2 ~ ’ R u o  I = - -  

x (4 (axdB (xd + aoo[JI (ax t )So( t 1 + JI (ax; 19 o( L )I>. (17) 

The energy radiated by the charged particle in the solid angle d o  = sin 8 de dt$ is 
given by 

+OD 112 +- 
E;H% dt = R 2 ( z )  I-, E;E;* dt. 

dw - = R 2  
d o  J-, 

Using equations (17) and (18), assuming for simplicity the medium to be dispersionless, 
integrating with respect to t, w and w’ with the help of the S function, retaining only the 
terms linear in U, evaluating the infinite sums containing Bessel functions (Hansen 
1975) and doing the somewhat tedious calculations of simplifying the various terms 
involved in equation (18), the final result can be put in the following form: 

2 312 512 dw e P I  sin28cos28 U & - E I ) ~  
d o  dw 4T4 ( E ~ M  + e2nl COS el2 
-- - 

o[nl cos’ e+ ~ ~ ( n l - n : ) / ( ~ z - ~ ~ ) ] +  uiEl(nt- ~ : ) M / ( E ~ -  cl) 
(1 - ugn: cos2 e)(i - u&f2)(1 -a/?’) I .  

(19) 

The above result specifies the intensity of backward transition radiation (i.e. the 
radiation going in the medium -1) at an angle 8 wrt z per unit solid angle per unit 
frequency interval in the presence of the alternating electric field due to a relativistically 
moving charged particle crossing the boundary between two media. Under the same 
physical situation, forward transition radiation (i.e. the radiation going in the medium 
-2) can be obtained from equation (19) by interchanging the indices 1 and 2,  and 
replacing uo by -UO (as now -2 can be conveniently taken as the reference axis with no 
other change). Here we conclude that the backward and the forward transition 
radiations are not equal. 

x 1 1 - U 2  
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The final result, namely equation (20) of DT, taking almost three-quarters of a page 
in length, is made up of six complicated terms, each consisting of infinite sums and 
integrals of expressions which in their turn involve six lengthy functions. Because of a 
wrong factor, (02/c3), in the second termsof equations (15) and (17) of DT, the velocity 
and the frequency dependences in all the remaining five terms, except the first, are 
found to be incorrect. Further, while analysing their equation (20), the authors have 
used inconsistent approximations, i.e. they have neglected terms -p2 and higher and 
simultaneously have retained the terms - ( u 2 / u i )  which are of lower order even for 
non-relativistic velocities. Consequently, in all the special cases, namely equations 
(22), (23), (24) and (25), of equation (20) of DT, the dominant linear field-dependent 
terms have been omitted by them and they have arrived at wrong conclusions. 

In the absence of the field (i.e. U = 0), for the case of any two non-magnetic media 
( w ,  = g2 = l),  our result given by equation (19) reduces to the relativistic expression, 
namely equation (20) of Zrelov and Ruzicka (1978) and equations (2.35) and (2.37) of 
Ginzburg and Tsytovich (1979). 

In the case of a particle entering a dielectric from a vaccum, the zero-field case of our 
result for backward transition radiation after substitutions = E 

reduces to equation (21) of Garibyan (1958). For a particle entering a vacuum from 
a dielectric, the zero-field case of our result for forward transition radiation after 
substitutions e2 = 1 = p1 = g2,  = E matches with equation (29) of Garibyan (1958). 
For non-relativistic velocities, our results, as above, coincide with equation (37) of 
Frank and Ginzburg (1945). 

Equation (19) is the most general expression that specifies the intensity of transition 
radiation in the presence of an alternating electric field which is valid for any velocity of 
the particle crossing the boundary between any two media, as long as the modulation 
energy is very small compared with the mean particle energy (i.e. U'<< UO). 

= 1 = w l  = g2, 

4. Discossin and conclusion 

We can put equation (19) in short as 

dw/dRdw = Z = Z o ( l  - a /y2) -2zZo( l  +2a /y2 )  (20) 

where lo denotes the intensity of the backward transition radiation without a field and 
the binomial expansion is valid since a << 1, y 3 1. Equation (20) shows that in the 
presence of the field, the backward transition radiation increases, but due to the change 
in sign of uo the forward transition radiation decreases. 

Writing the field parameters explicitly in equation (20), we obtain 

We can therefore conclude that the field contribution to the radiation varies linearly 
with the field strength and that it varies inversely with the field frequency. The 
conclusion drawn by DT in this context regarding a slight reduction in high-frequency 
fields and quadratic increase due to weak low-frequency fields is wrong. In the case of 
non-relativistic velocities ( y  = 1) the field contribution varies inversely with the particle 
velocity. For relativistic ( y  > 1) and ultra-relativistic (y >> 1) velocities, owing to the 
factor y - 3  in equation (ZO'), the field contribution to the radiation is comparatively 
small. 
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